Vanishing viscosity plane parallel channel flow and related singular perturbation problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing Viscosity Plane Parallel Channel Flow and Related Singular Perturbation Problems

We study a special class of solutions to the 3D Navier-Stokes equations ∂tu +∇uνu +∇p = ν∆u , with no-slip boundary condition, on a domain of the form Ω = {(x, y, z) : 0 ≤ z ≤ 1}, dealing with velocity fields of the form u(t, x, y, z) = (v(t, z), w(t, x, z), 0), describing plane-parallel channel flows. We establish results on convergence u → u as ν → 0, where u solves the associated Euler equat...

متن کامل

Vanishing Viscosity in the Barotropic b-Plane

The initial boundary value problems associated with the inviscid barotropic potential vorticity equation in the b-plane and its viscous analogue are considered. It is shown that the solution velocity to the viscous equation converges to the inviscid solution in a C1 sense for finite times and that, under additional smoothness assumptions on the inviscid flow, this convergence can be extended to...

متن کامل

Vanishing Viscosity Method for Transonic Flow

A vanishing viscosity method is formulated for two-dimensional transonic steady irrotational compressible fluid flows with adiabatic constant γ ∈ [1, 3). This formulation allows a family of invariant regions in the phase plane for the corresponding viscous problem, which implies an upper bound uniformly away from cavitation for the viscous approximate velocity fields. Mathematical entropy pairs...

متن کامل

Vanishing Viscosity in the Plane for Nondecaying Velocity and Vorticity

Assuming that initial velocity and initial vorticity are bounded in the plane, we show that on a sufficiently short time interval the unique solutions of the Navier-Stokes equations converge uniformly to the unique solution of the Euler equations as viscosity approaches zero. We also establish a rate of convergence.

متن کامل

Vanishing Viscosity in the Plane for Nondecaying Vorticity

Assuming that initial velocity has finite energy and initial vorticity is bounded in the plane, we show that on any finite time interval the unique solutions of the Navier-Stokes equations converge uniformly to the unique solution of the Euler equations as viscosity approaches zero. We also establish a rate of convergence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2008

ISSN: 1948-206X,2157-5045

DOI: 10.2140/apde.2008.1.35